Covariance matrices for mean field variational Bayes

Ryan Giordano, Tamara Broderick, Michael I. Jordan

Berkeley ITT Career Development Assistant Professor, MIT Berkeley
Statistical/computational trade-offs
Statistical/computational trade-offs

• Bayesian inference
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
 - all information about the parameter in the posterior

[Broderick, Kulis, Jordan 2013]
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
 - all information about the parameter in the posterior
- Approximating the posterior can be computationally expensive
Statistical/computational trade-offs

• Bayesian inference
 • modular, complex models
 • all information about the parameter in the posterior
 • Approximating the posterior can be computationally expensive
 • Computational/statistical gains for trading off some posterior knowledge
Statistical/computational trade-offs

• Bayesian inference
 • modular, complex models
 • all information about the parameter in the posterior
• Approximating the posterior can be computationally expensive
• Computational/statistical gains for trading off some posterior knowledge
 • point estimates: e.g., MAD-Bayes
Statistical/computational trade-offs

• Bayesian inference
 • modular, complex models
 • all information about the parameter in the posterior

• Approximating the posterior can be computationally expensive

• Computational/statistical gains for trading off some posterior knowledge
 • point estimates: e.g., MAD-Bayes
 • covariances, coherent estimates of uncertainty

[Broderick, Kulis, Jordan 2013]
What about uncertainty?

Variational Bayes (VB)

- Approximation for posterior
- Minimize Kullback-Liebler (KL) divergence:

$$p(✓ | x) \approx q(✓)$$

VB practical success

- point estimates and prediction
- fast
What about uncertainty?

• Variational Bayes (VB)
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

$p(\theta|x)$ \rightarrow $q(\theta)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- Minimize Kullback-Liebler (KL) divergence:

$$KL(q||p(\cdot|x))$$

$p(\theta|x)$

$q^*(\theta)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- Minimize Kullback-Liebler (KL) divergence:
 \[KL(q\|p(\cdot|x)) \]
- VB practical success
What about uncertainty?

• Variational Bayes (VB)
 • Approximation \(q^*(\theta) \) for posterior \(p(\theta|x) \)
 • Minimize Kullback-Liebler (KL) divergence:
 \[
 KL(q\|p(\cdot|x))
 \]

• VB practical success
 • point estimates and prediction
What about uncertainty?

- Variational Bayes (VB)
- Approximation \(q^*(\theta) \) for posterior \(p(\theta|x) \)
- Minimize Kullback-Liebler (KL) divergence:
 \[
 KL(q||p(\cdot|x))
 \]
 \[
 p(\theta|x)
 \]
 \[
 q^*(\theta)
 \]

- VB practical success
 - point estimates and prediction
 - fast

[Broderick, Boyd, Wibisono, Wilson, Jordan 2013]
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- Minimize Kullback-Liebler (KL) divergence:
 \[KL(q||p(\cdot|x)) \]
- VB practical success
 - point estimates and prediction
 - fast, streaming, distributed

[Broderick, Boyd, Wibisono, Wilson, Jordan 2013]
What about uncertainty?

\[
q(\phi) = \underbrace{\prod_{j=1}^{J} q(\phi_j)}_{\phi_1, \ldots, \phi_J} = \exp \left(-\frac{1}{2} \sum_{j=1}^{J} \left(\frac{\phi_j - \mu_j}{\sigma_j} \right)^2 \right)
\]

\[
KL(q || p(x)) = \int q(\phi) \log \frac{q(\phi)}{p(x | \phi)} d\phi
\]
What about uncertainty?

- Variational Bayes
What about uncertainty?

- Variational Bayes

\[
KL(q || p(\cdot | x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta | x)} d\theta
\]
What about uncertainty?

- Variational Bayes

\[
KL(q||p(\cdot|x)) = \int_\theta q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta
\]

[Bishop 2006]
What about uncertainty?

- Variational Bayes

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

- Mean-field variational Bayes (MFVB)

$$q(\theta) = \prod_{j=1}^{J} q(\theta_j)$$
What about uncertainty?

- Variational Bayes

\[KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta \]

- Mean-field variational Bayes (MFVB)

\[q(\theta) = \prod_{j=1}^{J} q(\theta_j) \]
What about uncertainty?

- Variational Bayes

\[
KL(q\|p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta
\]

- Mean-field variational Bayes (MFVB)

\[
q(\theta) = \prod_{j=1}^{J} q(\theta_j)
\]

- Underestimates variance (sometimes severely)
What about uncertainty?

- Variational Bayes
 \[
 KL(q\|p(\cdot|x)) = \int_\theta q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta
 \]

- Mean-field variational Bayes (MFVB)
 \[
 q(\theta) = \prod_{j=1}^{J} q(\theta_j)
 \]

- Underestimates variance (sometimes severely)

- No covariance estimates

[Bishop 2006]
What about uncertainty?

- Variational Bayes

\[
KL(q||p(\cdot|x)) = \int_\theta q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta
\]

- Mean-field variational Bayes (MFVB)

\[
q(\theta) = \prod_{j=1}^J q(\theta_j)
\]

- Underestimates variance (sometimes severely)

- No covariance estimates

[MacKay 2003; Bishop 2006; Wang, Titterington 2004; Turner, Sahani 2011]
What about uncertainty?

- Variational Bayes
 \[KL(q\|p(\cdot|x)) = \int_\theta q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta \]

- Mean-field variational Bayes (MFVB)
 \[q(\theta) = \prod_{j=1}^J q(\theta_j) \]

- Underestimates variance (sometimes severely)

- No covariance estimates

[MacKay 2003; Bishop 2006; Wang, Titterington 2004; Turner, Sahani 2011]
[Dunson 2014; Bardenet, Doucet, Holmes, 2015]
1. Derive *Linear Response Variational Bayes* (LRVB) variance/covariance correction

2. Accuracy experiments

3. Scalability experiments
Linear response
Linear response

- Cumulant-generating function
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

- True posterior covariance

\[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance
 \[\Sigma := \frac{d^2}{dt^2} \frac{d}{dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^Td} C_{p(\cdot|x)}(t) \right|_{t=0} \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \quad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]
 \[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

- “Linear response”
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

mean \(= \frac{d}{dt} C(t) \bigg|_{t=0} \)

- True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]

\[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

- “Linear response”

\[\log p(\theta|x) \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0} \quad V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

- “Linear response”
 \[\log p(\theta|x) + t^T \theta \]

[Bishop 2006]
Linear response

• Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

• True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \right|_{t=0} \]
 \[V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

• “Linear response”
 \[\log p_t(\theta) := \log p(\theta|x) + t^T \theta \]

[Bishop 2006]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0} \]
 \[V := \left. \frac{d^2}{dt^T dt} C_{q^*(t)}(t) \right|_{t=0} \]

- "Linear response"
 \[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t) \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

mean = \(\frac{d}{dt} C(t) \bigg|_{t=0} \)

- True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \quad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

- “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E}e^{t^T \theta} \]

\[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

• True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \bigg|_{t=0} \]

\[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

• “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \quad \text{MFVB } q^*_t \]

• The LRVB approximation

\[[\text{Bishop 2006}] \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance

\[\Sigma := \left. \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \right|_{t=0} \quad V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

- “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q^*_t \]

- The LRVB approximation

\[\Sigma = \left. \frac{d}{dt^T} \left[\frac{d}{dt} C_p(\cdot|x)(t) \right] \right|_{t=0} \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \frac{d^2}{dtT dt} C_p(\cdot|x)(t) \bigg|_{t=0} \quad V := \frac{d^2}{dtT dt} C_{q^*}(t) \bigg|_{t=0} \]

- “Linear response”
 \[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{MFVB } q_t^* \]

- The LRVB approximation
 \[\Sigma = \frac{d}{dtT} \mathbb{E}_{p_t} \theta \bigg|_{t=0} \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

\[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance

\[\Sigma := \left. \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \right|_{t=0} \]

\[V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

- “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]

- The LRVB approximation

\[\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0} \]

[Bishop 2006]
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

\[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

• True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt T dt} C_{p(\cdot|\mathbf{x})}(t) \bigg|_{t=0} \]

\[V := \frac{d^2}{dt T dt} C_{q^*}(t) \bigg|_{t=0} \]

• “Linear response”

\[\log p_t(\theta) := \log p(\theta|\mathbf{x}) + t^T \theta - C(t), \text{ MFVB } q_t^* \]

• The LRVB approximation

\[\Sigma = \frac{d}{dt T} \mathbb{E}_{p_t} \theta \bigg|_{t=0} \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0} \]
 \[V := \left. \frac{d^2}{dt^T dt} C_{q^*(t)}(t) \right|_{t=0} \]

- “Linear response”
 \[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]

- The LRVB approximation
 \[\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0} \approx \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0} \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance

\[\Sigma := \left. \frac{d^2}{dtT dt} C_{p(\cdot|x)}(t) \right|_{t=0} \quad \quad V := \left. \frac{d^2}{dtT dt} C_{q^*(t)} \right|_{t=0} \]

- “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]

- The LRVB approximation

\[\Sigma = \left. \frac{d}{dtT} \mathbb{E}_{p_t} \theta \right|_{t=0} \approx \left. \frac{d}{dtT} \mathbb{E}_{q_t^*} \theta \right|_{t=0} =: \hat{\Sigma} \]
• LRVB covariance estimate \[\hat{\Sigma} := \frac{d}{dt} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0} \]
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dtT} \mathbb{E}_{q^*_t} \theta \bigg|_{t=0}$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} \equiv \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0}$
- Suppose q_t exponential family
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t
Getting rid of t

• LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt} \left. \mathbb{E}_{q^*} \theta \right|_{t=0}$

• Suppose q_t exponential family with mean parametrization m_t
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t
Getting rid of \(t \)

- LRVB covariance estimate \(\hat{\Sigma} := \frac{d}{dt^T} m_t^* \bigg|_{t=0} \)

- Suppose \(q_t \) exponential family with mean parametrization \(m_t \)

- KL optimization: fixed point equation in the mean params

\[
0 = \frac{\partial}{\partial m_t} KL_t \bigg|_{m_t = m_t^*}
\]
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t
- KL optimization: fixed point equation in the mean params

$$m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t = m_t^*} + m_t^*$$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt} m_t^* \bigg|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t
- KL optimization: fixed point equation in the mean params

\[
m_t^* = \frac{\partial}{\partial m_t} KL_t \bigg|_{m_t=m_t^*} + m_t^*
\]

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}
\]
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt^T} m_t^* \bigg|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

$$m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t=m_t^*} + m_t^*$$

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m_t^*} \right)^{-1}$$

- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t
- KL optimization: fixed point equation in the mean params
 \[m_t^* = \frac{\partial}{\partial m_t} KL_t \bigg|_{m_t=m_t^*} + m_t^* \]
 \[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]
- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$
 \[\hat{\Sigma} = (V^{-1} - H)^{-1} \]
Getting rid of t

- LRVB covariance estimate \(\hat{\Sigma} := \frac{d}{dt^T} m_t^* \bigg|_{t=0} \)

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

\[
m_t^* = \frac{\partial}{\partial m_t} KL_t \bigg|_{m_t=m_t^*} + m_t^*
\]

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m_t^*} \right)^{-1}
\]

- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$

\[
\hat{\Sigma} = (V^{-1} - H)^{-1} = (I - VH)^{-1} V
\]
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

$$m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t=m_t^*} + m_t^*$$

$$\hat{\Sigma} = \left. \left(\frac{\partial^2 KL}{\partial m \partial m^T} \right)^{-1} \right|_{m=m^*}$$

- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$

$$\hat{\Sigma} = (V^{-1} - H)^{-1} = (I - VH)^{-1} V \quad \text{for} \quad H := \left. \frac{\partial^2 L}{\partial m \partial m^T} \right|_{m=m^*}$$
LRVB estimator

- LRVB covariance estimate
 \[\hat{\Sigma} := \left. \frac{d}{dtT} \mathbb{E}_{q_t^*} \theta \right|_{t=0} \]

- Suppose \(q_t \) exponential family with mean parametrization \(m_t \)

- KL optimization: fixed point equation in the mean params
 \[m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t=m_t^*} + m_t^* \]
 \[\hat{\Sigma} = \left(\left. \frac{\partial^2 KL}{\partial m \partial m^T} \right|_{m=m^*} \right)^{-1} \]

- KL decomposition: \(KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L \)
 \[\hat{\Sigma} = \left(V^{-1} - H \right)^{-1} = \left(I - VH \right)^{-1} V \quad \text{for} \quad H := \left. \frac{\partial^2 L}{\partial m \partial m^T} \right|_{m=m^*} \]
LRVB estimator

• LRVB covariance estimate

\[\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t} \theta \right|_{t=0} \]

\[\hat{\Sigma} = \left(\left. \frac{\partial^2 KL}{\partial m \partial m^T} \right|_{m=m^*} \right)^{-1} \]

• KL decomposition: \(KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L \)

\[\hat{\Sigma} = \left(V^{-1} - H \right)^{-1} = \left(I - VH \right)^{-1} V \quad \text{for} \quad H := \left. \frac{\partial^2 L}{\partial m \partial m^T} \right|_{m=m^*} \]
LRVB estimator

• LRVB covariance estimate

\[\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q^*_t} \theta \bigg|_{t=0} \]

\[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]

• KL decomposition: \(KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L \)

\[\hat{\Sigma} = (V^{-1} - H)^{-1} = (I - VH)^{-1}V \quad \text{for} \quad H := \frac{\partial^2 L}{\partial m \partial m^T} \bigg|_{m=m^*} \]
LRVB estimator

- LRVB covariance estimate

\[\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0} \]

\[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]

\[\hat{\Sigma} = (I - VH)^{-1} V \]
LRVB estimator

- LRVB covariance estimate

\[
\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q^*_t} \theta \bigg|_{t=0}
\]

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1} V
\]
LRVB estimator

- LRVB covariance estimate
 \[\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0} \]

\[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]

\[\hat{\Sigma} = (I - VH)^{-1} V \]
LRVB estimator

- LRVB covariance estimate

\[\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0} \]

\[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]

\[\hat{\Sigma} = (I - VH)^{-1}V \]

- Symmetric and positive definite at local min of KL
LRVB estimator

• LRVB covariance estimate
 \[\hat{\Sigma} := \left. \frac{d}{dt^T} E_{q^*_t} \theta \right|_{t=0} \]

 \[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \right|_{m=m^*} \right)^{-1} \]

 \[\hat{\Sigma} = (I - VH)^{-1} V \]

• Symmetric and positive definite at local min of KL

• The LRVB assumption: \(E_{p_t} \theta \approx E_{q^*_t} \theta \)
LRVB estimator

- LRVB covariance estimate \(\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0} \)

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1}V
\]

- Symmetric and positive definite at local min of KL

- The LRVB assumption: \(\mathbb{E}_{p_t} \theta \approx \mathbb{E}_{q_t^*} \theta \)
LRVB estimator

• LRVB covariance estimate \(\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0} \)

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1} V
\]

• Symmetric and positive definite at local min of KL

• The LRVB assumption: \(\mathbb{E}_{p_t} \theta \approx \mathbb{E}_{q_t^*} \theta \)

[Bishop 2006]
LRVB estimator

• LRVB covariance estimate
 \[\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0} \]
 \[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial \theta \partial \theta^T} \bigg|_{m=m^*} \right)^{-1} \]
 \[\hat{\Sigma} = (I - VH)^{-1} V \]

• Symmetric and positive definite at local min of KL
• The LRVB assumption: \(\mathbb{E}_{p_t} \theta \approx \mathbb{E}_{q_t^*} \theta \)
• LRVB estimate is exact when VB gives exact mean (e.g. multivariate normal)

[Bishop 2006]
Scaling the matrix inverse
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1} V \)
- Decomposition of parameter vector
Scaling the matrix inverse

• LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

• Decomposition of parameter vector

\[
\theta = (\alpha^T, z^T)^T
\]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1} V \)

- Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]

\[
H = \begin{pmatrix}
H_\alpha & H_{\alpha z} \\
H_{z \alpha} & H_z
\end{pmatrix}
\]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)
- Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]
- Schur complement

\[H = \begin{bmatrix} H_\alpha & H_{\alpha z} \\ H_{z \alpha} & H_z \end{bmatrix} \]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector

\[
\theta = (\alpha^T, z^T)^T
\]

\[
H = \begin{pmatrix}
H_\alpha & H_{\alpha z} \\
H_{z\alpha} & H_z
\end{pmatrix}
\]

- Schur complement

\[
\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z\alpha})^{-1} V_\alpha
\]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]

- Schur complement
 \[\hat{\Sigma}_\alpha = \left(I_{\alpha} - V_{\alpha} H_{\alpha} - V_{\alpha} H_{\alpha z} \left(I_{z} - V_{z} H_{z} \right)^{-1} V_{z} H_{z \alpha} \right)^{-1} V_{\alpha} \]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1} V \)

- Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]

- Schur complement
 \[\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z \alpha})^{-1} V_\alpha \]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector

\[
\theta = (\alpha^T, z^T)^T
\]

- Schur complement

\[
\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1}V_z H_{z \alpha})^{-1} V_\alpha
\]

- Sparsity patterns
Scaling the matrix inverse

- LRVB estimate: \(\hat{\Sigma} = (I - VH)^{-1} V \)

- Decomposition of parameter vector
 \[
 \theta = (\alpha^T, z^T)^T
 \]

- Schur complement
 \[
 \hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z \alpha})^{-1} V_\alpha
 \]

- Sparsity patterns
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector
 \[
 \theta = (\alpha^T, z^T)^T
 \]

- Schur complement
 \[
 \hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1}V_z H_{\alpha z})^{-1} V_\alpha
 \]

- Sparsity patterns
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)
- Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]
- Schur complement
 \[\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1}V_z H_{z\alpha})^{-1} V_\alpha \]
- Sparsity patterns

\[
\begin{array}{cc}
H_\alpha & H_{\alpha z} \\
H_{z\alpha} & H_z
\end{array}
\]
1. Derive *Linear Response Variational Bayes* (LRVB) variance/covariance correction

2. Accuracy experiments

3. Scalability experiments
Experiments
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model

\[z_n | \beta, \tau \overset{\text{indep}}{\sim} \mathcal{N} \left(z_n | \beta x_n, \tau^{-1} \right), \quad y_n | z_n \overset{\text{indep}}{\sim} \text{Poisson} \left(y_n | \exp(z_n) \right), \]

\[\beta \sim \mathcal{N} (\beta | 0, \sigma_\beta^2), \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model

\[z_n | \beta, \tau \overset{\text{indep}}{\sim} \mathcal{N}(z_n | \beta x_n, \tau^{-1}), \quad y_n | z_n \overset{\text{indep}}{\sim} \text{Poisson}(y_n | \exp(z_n)), \]

\[\beta \sim \mathcal{N}(\beta | 0, \sigma^2_\beta), \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]

- MFVB assumption:

\[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n) \]
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model

\[z_n | \beta, \tau \overset{\text{indep}}{\sim} \mathcal{N} (z_n | \beta x_n, \tau^{-1}) , \quad y_n | z_n \overset{\text{indep}}{\sim} \text{Poisson} \left(y_n | \exp(z_n) \right), \]

\[\beta \sim \mathcal{N}(\beta | 0, \sigma^2_\beta), \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]

- MFVB assumption:

\[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model

\[z_n | \beta, \tau \overset{\text{indep}}{\sim} \mathcal{N} \left(z_n | \beta x_n, \tau^{-1} \right), \quad y_n | z_n \overset{\text{indep}}{\sim} \text{Poisson} \left(y_n | \exp(z_n) \right), \]

\[\beta \sim \mathcal{N}(\beta|0,\sigma^2_{\beta}), \quad \tau \sim \text{Gamma}(\tau|\alpha_\tau,\beta_\tau) \]

• MFVB assumption:

\[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]

• 100 simulated data sets, 500 data points each, R MCMCglmm package (20,000 samples)
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model
 \[z_n | \beta, \tau \mathop{\sim}^{\text{indep}} N (z_n | \beta x_n, \tau^{-1}) , \quad y_n | z_n \mathop{\sim}^{\text{indep}} \text{Poisson} (y_n | \exp(z_n)) , \]
 \[\beta \sim N (\beta | 0, \sigma^2_\beta) , \quad \tau \sim \text{Gamma} (\tau | \alpha_\tau , \beta_\tau) \]

• MFVB assumption:
 \[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n) , \quad q(z_n) = N (z_n) \]

• 100 simulated data sets, 500 data points each, R \textit{MCMCg1mm} package (20,000 samples)
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model
 \[z_n | \beta, \tau \overset{indep}{\sim} \mathcal{N}(z_n | \beta x_n, \tau^{-1}) , \quad y_n | z_n \overset{indep}{\sim} \text{Poisson}(y_n | \exp(z_n)) , \]
 \[\beta \sim \mathcal{N}(\beta | 0, \sigma^2_\beta) , \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]

- MFVB assumption:
 \[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n) , \quad q(z_n) = \mathcal{N}(z_n) \]

- 100 simulated data sets, 500 data points each, R \text{MCMCg1mm} package (20,000 samples)
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model
 \(z_n \mid \beta, \tau \overset{\text{indep}}{\sim} \mathcal{N}(z_n \mid \beta x_n, \tau^{-1}) \),
 \(y_n \mid z_n \overset{\text{indep}}{\sim} \text{Poisson}(y_n \mid \exp(z_n)) \),
 \(\beta \sim \mathcal{N}(\beta \mid 0, \sigma^2_\beta) \),
 \(\tau \sim \text{Gamma}(\tau \mid \alpha_\tau, \beta_\tau) \)

• MFVB assumption:
 \[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]

• 100 simulated data sets, 500 data points each, R MCMCglmm package (20,000 samples)

LRVB, MFVB
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model
 \[z_n | \beta, \tau \sim \text{iid } \mathcal{N}(z_n | \beta x_n, \tau^{-1}) , \quad y_n | z_n \sim \text{iid } \text{Poisson}(y_n | \exp(z_n)) , \]
 \[\beta \sim \mathcal{N}(\beta | 0, \sigma_\beta^2) , \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]

• MFVB assumption:
 \[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]

• 100 simulated data sets, 500 data points each, R \textit{MCMCglmm} package (20,000 samples)
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model

\[
z_n | \beta, \tau \sim \text{indep } \mathcal{N}(z_n | \beta x_n, \tau^{-1}), \quad y_n | z_n \sim \text{indep } \text{Poisson}(y_n | \exp(z_n)),
\]

\[
\beta \sim \mathcal{N}(\beta | 0, \sigma^2_\beta), \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau)
\]

• MFVB assumption:

\[
q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^N q(z_n), \quad q(z_n) = \mathcal{N}(z_n)
\]

• 100 simulated data sets, 500 data points each, R MCMCglmm package (20,000 samples)

LRVB, MFVB
Experiments
Experiments

- Linear model with random effects
Experiments

• Linear model with random effects

\[
y_n | \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N} (y_n | \beta^T x_n + r_n z_k(n), \tau^{-1}) , \quad z_k | \nu \overset{iid}{\sim} \mathcal{N} (z_k | 0, \nu^{-1})
\]

\[
\beta \sim \mathcal{N} (\beta | 0, \Sigma_{\beta}) , \quad \nu \sim \Gamma (\nu | \alpha_{\nu}, \beta_{\nu}) , \quad \tau \sim \Gamma (\tau | \alpha_{\tau}, \beta_{\tau})
\]
Experiments

- Linear model with random effects
 \[y_n|\beta, z, \tau \sim \text{iid} \mathcal{N} (y_n|\beta^T x_n + r_n z_{k(n)}, \tau^{-1}) , \quad z_k|\nu \sim \mathcal{N} (z_k|0, \nu^{-1}) \]
 \[\beta \sim \mathcal{N}(\beta|0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu|\alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau|\alpha_\tau, \beta_\tau) \]

- MFVB assumption:
 \[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]
Experiments

• Linear model with random effects

\[y_n \mid \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N}(y_n \mid \beta^T x_n + r_n z_{k(n)}, \tau^{-1}) , \quad z_k \mid \nu \overset{iid}{\sim} \mathcal{N}(z_k \mid 0, \nu^{-1}) \]

\[\beta \sim \mathcal{N}(\beta \mid 0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu \mid \alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau \mid \alpha_\tau, \beta_\tau) \]

• MFVB assumption:

\[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

• 100 simulated data sets, 300 data points each, R \texttt{MCMCglmm} package (20,000 samples)
Experiments

• Linear model with random effects

\[y_n | \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N} \left(y_n | \beta^T x_n + r_n z_k(n), \tau^{-1} \right), \quad z_k | \nu \overset{iid}{\sim} \mathcal{N} \left(z_k | 0, \nu^{-1} \right) \]

\[\beta \sim \mathcal{N}(\beta|0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu|\alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau|\alpha_\tau, \beta_\tau) \]

• MFVB assumption:

\[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

• 100 simulated data sets, 300 data points each, R MCMCglmm package (20,000 samples)
Experiments

• Linear model with random effects

\[y_n | \beta, z, \tau \overset{iid}{\sim} \mathcal{N} \left(y_n | \beta^T x_n + r_n z_{k(n)}, \tau^{-1} \right), \quad z_k | \nu \overset{iid}{\sim} \mathcal{N} \left(z_k | 0, \nu^{-1} \right) \]

\[\beta \sim \mathcal{N}(\beta|0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu|\alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau|\alpha_\tau, \beta_\tau) \]

• MFVB assumption:

\[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

• 100 simulated data sets, 300 data points each, R MCMCglmm package (20,000 samples)
Experiments

- Linear model with random effects
 \[y_n | \beta, z, \tau \sim \text{ind} \mathcal{N} (y_n | \beta^T x_n + r_n z_k(n), \tau^{-1}) , \quad z_k | \nu \sim \text{iid} \mathcal{N} (z_k | 0, \nu^{-1}) \]
 \[\beta \sim \mathcal{N}(\beta|0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu|\alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau|\alpha_\tau, \beta_\tau) \]

- MFVB assumption:
 \[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

- 100 simulated data sets, 300 data points each, R MCMCglmm package (20,000 samples)
Experiments

• Linear model with random effects

\[y_n | \beta, z, \tau \sim \text{Indep} \mathcal{N} (y_n | \beta^T x_n + r_n z_k(n), \tau^{-1}) , \quad z_k|\nu \sim \mathcal{N} (z_k|0, \nu^{-1}) \]

\[\beta \sim \mathcal{N} (\beta|0, \Sigma_\beta), \quad \nu \sim \Gamma (\nu|\alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma (\tau|\alpha_\tau, \beta_\tau) \]

• MFVB assumption: \[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

• 100 simulated data sets, 300 data points each, R \texttt{MCMCglmm} package (20,000 samples)
Experiments
Experiments

• Gaussian mixture model
Experiments

• Gaussian mixture model

\[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]

with conjugate priors on \(\pi, \mu, \Lambda \)
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[
 \left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n)
 \]
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1: N} \prod_{k=1: K} \mathcal{N}(x_n | \mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[\left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n) \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \(\text{R bayesm} \) package (function \(\text{rnmixGibbs} \); at least 500 effective samples)
Experiments

- Gaussian mixture model:
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[
 \left[\prod_{k=1}^{K} q(\mu_k) q(\Lambda_k) q(\pi_k) \right] \prod_{n=1}^{N} q(z_n)
 \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \texttt{R bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[
 \left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n)
 \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \texttt{R bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions

\[\text{Sim } \mu \text{ sd} \]

\[\begin{array}{c}
\text{estimates} \\
0.003 \\
0.006 \\
0.009
\end{array}
\]

\[\begin{array}{c}
\text{Gibbs std dev} \\
0.000 \\
0.003 \\
0.006 \\
0.009
\end{array}
\]

LRVB, MFVB
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \prod_{n=1}^{N} q(z_n) \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \(\text{R bayesm package (function } \text{rnmixGibbs; at least 500 effective samples) } \)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
Experiments

• Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

• MFVB assumption:
 \[
 \left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n)
 \]

• 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \texttt{R} \texttt{bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

• MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}(x_n | \mu_k, \Lambda_k^{-1}) z_{nk} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[
 \left[\prod_{k=1}^{K} q(\mu_k) q(\Lambda_k) q(\pi_k) \right] \prod_{n=1}^{N} q(z_n)
 \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, R \texttt{bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions

LRVB, MFVB
1. Derive Linear Response Variational Bayes (LRVB) variance/covariance correction

2. Accuracy experiments

3. Scalability experiments
Experiments
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
Experiments

- Scaling: Gaussian mixture model (K components, P dimensions, N data points)
- The number of parameters in μ, π, Λ grows as $O(KP^2)$
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
• The number of parameters in μ, π, Λ grows as $O(KP^2)$
• The number of parameters in z grows as $O(KN)$
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
• The number of parameters in μ, π, Λ grows as $O(KP^2)$
• The number of parameters in z grows as $O(KN)$
• Worst case scaling: $O(K^3), O(P^6), O(N)$
Experiments

- Scaling: Gaussian mixture model (K components, P dimensions, N data points)
- The number of parameters in μ, π, Λ grows as $O(KP^2)$
- The number of parameters in z grows as $O(KN)$
- Worst case scaling: $O(K^3), O(P^6), O(N)$

![Graph showing running time vs number of data points]
Experiments

- Scaling: Gaussian mixture model \((K \text{ components, } P \text{ dimensions, } N \text{ data points})\)
- The number of parameters in \(\mu, \pi, \Lambda\) grows as \(O(KP^2)\)
- The number of parameters in \(z\) grows as \(O(KN)\)
- Worst case scaling: \(O(K^3), O(P^6), O(N)\)
Experiments

- Scaling: Gaussian mixture model (K components, P dimensions, N data points)
- The number of parameters in μ, π, Λ grows as $O(KP^2)$
- The number of parameters in z grows as $O(KN)$
- Worst case scaling: $O(K^3), O(P^6), O(N)$

Experiments
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
 • MFVB q_{MFVB} not in exponential family

• Targeting other posterior statistics besides point estimates and covariance
Conclusions, etc

- LRVB covariance correction: in many cases, accurate covariance estimates for VB
Conclusions, etc

- LRVB covariance correction: in many cases, accurate covariance estimates for VB

- Next steps:
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
 • MFVB q not in exponential family
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
 • MFVB q not in exponential family
 • Targeting other posterior statistics besides point estimates and covariance
References

